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Abstract

This paper posits three principles that are
fundamental to understanding decision-making
interactions in aviation traffic flow management
(TFM) operations involving airline schedule
disruptions caused by weather.  The principles
have been illustrated with a computer simulation
model called Intelligent agent-based Model for
Policy Assessment of Collaborative TFM
(IMPACT), developed by The MITRE
Corporation’s Center for Advanced Aviation
System Development (CAASD).  The principles
are as follows:

1. The air traffic management (ATM) authority
cannot make the best decisions for the
system as a whole without collaboration
from the airlines.  This is because the ATM
authority does not have purview into real
airline costs.  As a practical matter, only
airlines themselves are in a position to know
the economic consequences of delays to
their flights.

2. Individual airlines, if they make decisions
independently, tend to cause excess
congestion that is sub-optimal for the
airlines themselves.  This is true even if the
airlines have perfect information about the
weather and updates about each other’s
intent.

3. When future weather information is
imperfect, predictability may trade off with
expected system efficiency.

An implication of the first two principles, which
were originally presented at ATM2000, is that
both the ATM authority and the airlines must
participate in TFM decision-making to achieve a
good result, both from the point of view of
individual airlines and of the system as a whole.
An implication of the third principle is that the
TFM process is, in a sense, self-limiting.  If
actions are taken to make the system more
efficient across many events, then the
predictability of the system in any given event
may be limited.  High predictability and high
efficiency (averaged across many schedule
disruption events) may be unachievable
simultaneously.  In a TFM system that is
operated to achieve high average efficiency,
there can be large fluctuations in the perceived
success of TFM decisions made in particular
schedule disruption events.

Introduction

The TFM system, as it manifests in a schedule
disruption at a major airport, is an example of a
complex adaptive system.  One aspect of the
complexity is that the number of possible
decisions among all the decision-makers is
extremely large, and the decisions among
different decision-makers interact.  Another
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aspect of complexity is that the goals of the
different decision-makers, which include airlines
and the ATM authority, may conflict and the
information available to the decision-makers
typically varies among the decision-makers.  The
decision-makers, faced with inability to know or
control the system in its entirety, adapt to
circumstances as the scenario evolves.

MITRE CAASD has developed a set of models
to illuminate the complexity of TFM scenarios.
The models range from relatively simple models
resembling games, to more comprehensive
agent-based models that incorporate software
agents to represent self-interested, profit-oriented
airlines.2  These models illustrate at various
levels of detail how the effects of decision-
making evolve in such scenarios.

Can the TFM Authority or Airlines
Resolve Schedule Disruptions by
Themselves?

In previous work, IMPACT agent-based
modeling results have shown that the ATM
authority cannot generally resolve schedule
disruptions by itself because the ATM authority
does not have complete information about
airlines’ priorities.3  Even if the ATM authority
can accurately predict the weather, it does not,
and probably cannot, have enough information
about airlines’ costs to optimize system
performance.  Hypothetically, airlines could
simply report their costs to the ATM authority
for use in optimizing system performance, but
other results show that if airlines are deceptive
about their costs, the nominal optimal solution
can be severely distorted.4

                                                            
2 L. A. Wojcik, “Models to Understand Airline
and ATM Authority Decision-Making
Interactions in Schedule Disruptions: From
Simple Games to Agent-Based Models”, chapter
37 in Handbook of Airline Strategy, ed. G. F.
Butler and M. R. Keller. New York: McGraw-
Hill, 2001, pp. 549-575.
3 K. C. Campbell, W. W. Cooper, D. P.
Greenbaum, and L. A. Wojcik,  “Modeling
Distributed Human Decision-Making in Traffic
Flow Management Operations”, chapter 15 in
Air Transportation Systems Engineering, ed. G.
L. Donohue and A. G. Zellweger. Reston ,
Virginia: American Institute of Aeronautics and
Astronautics (AIAA), 2001, pp. 227-237.
4 L. A. Wojcik, op cit.

If airlines are left to their own volition in
schedule disruptions, without action by the ATM
authority, another kind of effect occurs.  Because
the airlines are self-interested, they fail to see the
full system benefit of reducing congestion.  This
effect is an example of the “tragedy of the
commons”.5  In economic parlance, the effect
can be attributed to “congestion externalities”.
The effect occurs even when airlines have
perfect information about the weather and
updates about each other’s intent.  Thus, when
schedules are disrupted, both the ATM authority
and airlines have economic roles in managing the
set of responses.  This is a fundamental result for
TFM operations in which the system operates in
a first-come-first-served mode.

In TFM operations in the U.S., the Federal
Aviation Administration (FAA) and the airlines
in the practice of Collaborative Decision-Making
(CDM) have recognized these effects.  In the
1980s, ground delay programs (GDPs) became
part of the FAA’s standard repertoire for
responding to major weather-related capacity
reductions at airports.  In the 1990s, the FAA’s
CDM program facilitated exchange of
information between airlines and the FAA and
increased decision-making power by airlines to
change their flights in a GDP.  It also became
apparent that airlines by themselves could not
resolve the “bow wave” of pent-up demand that
typically follows a GDP that ends when the bad
weather dissipates.  Thus, FAA intervention was
needed, usually in the form of an extension of
the GDP, beyond the period of reduced airport
capacity caused by weather conditions.

Weather Information Quality

The IMPACT model results show that the effects
described in the previous section occur even
when information about the effect of weather on
future airport capacity is perfect.  Information
about future weather always is imperfect, so
what is the effect of this?

Figure 1 shows the results of an IMPACT
simulation of an actual weather-induced schedule
disruption event that occurred at Washington,
D.C. Dulles Airport on August 9, 2000.  In this
case, the FAA declared a Ground Stop (GS) for

                                                            
5 K. C. Campbell, et al., op cit.
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Figure 1.  IMPACT Simulation of Ground Stop Scenario at Dulles Airport (IAD)

Figure 2.  IMPACT Simulation of Same Scenario with an Early GDP
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arrivals into Dulles when the weather began at
about 19:00 hours, and gradually extended it to
include airports more distant from Dulles.  In the
simulation, the FAA intelligent agent was
programmed to behave as the FAA did during
the actual event.  The dark red line in Figure 1
shows simulated arrival capacity (in number of
flights per quarter-hour), and the blue curve
shows the ground stack for scheduled Dulles
arrivals, which primarily is caused by the GS.  In
the actual event, the capacity limitation
apparently was in airspace near Dulles airport,
not the airport itself.  In IMPACT we
represented this in an approximate way as
reduced arrival capacity at the airport.  As the
simulation evolved, the intelligent agents
representing airlines made decisions based on
trying to maximize their profit, utilizing perfect
weather information.  The airlines cancelled
some flights, but an airborne stack nevertheless
developed during the early portion of the weather
event.  The overall result (in simulation) was an
under-response to the weather during the early
stages of the capacity reduction and an over-
response during the later stages, and high cost to
the airlines.  The actual event differed from the
simulation in many respects, since the actual
system included problems at many other airports
and regions of airspace that are not represented
in the simulation, plus decision makers took
specific actions that are known to be different
from the simulation.  However, the overall
qualitative effect (under-response early in the
event, over-response later) was similar, and
reports from the field indicate a sense of being
“behind the power curve” during the event (not
just at Dulles, but over the East Coast in
general).6

Figure 2 shows the same weather event, except
the simulated FAA agent was programmed to
declare a GDP match to the capacity reduction
well in advance of the bad weather.  In this case,
the ground stack was smaller and earlier than in
Figure 1, and the result was much better for the
airlines.

In fact, we have simulated other possible FAA
actions during this scenario which show other
ways it would have been possible to generate a
better result for the airlines than actually
                                                            
6 Federal Aviation Administration, “ATC Daily
Report”, Wednesday August 9, 2000.

occurred (subject to the approximations of the
simulation).  Does this suggest the FAA made a
mistake?  Not at all!  All these simulations were
done after-the-fact, and they do not take into
account the quality of information that was
available to the FAA at the time of decision.
Future weather information always is imperfect,
and a good after-the-fact analysis must take this
into account.

Analyzing Decision-Making with
Imperfect Weather Information

There is a well-established methodology for
taking into account information quality in
decision-making, called decision analysis.7  Here
we apply the decision analysis approach to TFM
decision-making for a simple example. The
scenario and choices in this initial analysis are
much simpler than the real case just described; to
date, the tools to facilitate decision analysis of
realistic cases have not been developed.  We
applied IMPACT to generate the distribution of
possible outcomes following an initial imperfect
forecast, for each of several strategy outcomes.8

Decision-making should be based upon the entire
distribution of possible airport capacity states,
not from a single predicted state.  Similarly,
when decision-making is analyzed after-the-fact,
it should be analyzed from the perspective of the
distribution of possible airport capacity states at
the times of decision, not just from the
perspective of the capacity as it actually turned
out.

The scenario we considered had a four-hour
advance forecast of severe weather.  To simplify,
the ATM authority was given one of three
possible strategy options in a set of simulations.
The analysis determined which of the three
strategy options generated the best possible
result on average, across the set of possible
forecast histories and actual capacity states that

                                                            
7 Raiffa, H, Decision Analysis, Addison-Wesley
Publishing Company, Reading, Massachusetts,
U.S., 1970.
8 L. A. Wojcik and D. P. Greenbaum, “An Air
Traffic Flow Management Decision-Making
Model”, presented at Transportation Research
Board 80th Annual Meeting, Washington, D.C.,
January 7-11, 2001.
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could result from the initial forecast four hours in
advance.  The three strategy options were:

• Declare GDP immediately after the four-
hour advance forecast, assuming the airport
arrival capacity reduction matches the
forecast,

• Wait two hours after the initial forecast,
when the weather forecast should be better
than the initial forecast, before declaring the
GDP, and

• Do nothing.

If the ATM authority decides early, the capacity
forecast information will have poor quality, but
few flights will have departed for the affected
airport, thus permitting maximum effect of the
GDP.  If the ATM authority decides later, the
forecast will be better, but many flights will
already be in the air so the GDP can influence
fewer flights.

Using data from an assessment of quality of
weather information9, we generated a set of 100
forecast histories and actual arrival capacities
that result following the initial forecast of severe
weather.  We simulated the three ATM authority
strategies against each of the 100 histories.  In all
three cases, airlines modified their schedules in
response to the same imperfect future weather
information as the ATM authority.  In addition,
as a check on sensibility, we ran a case in which
neither the ATM authority nor the airlines took
any actions to change initial arrival schedules
whatsoever, again against the 100 histories.
Finally, we ran all four cases when both the
ATM authority and the airlines have perfect
weather information.  With perfect weather
information, there is no advantage in waiting for
a better forecast, so a GDP immediately after the
initial four-hour forecast is expected to be best.
Since the no-actions case was independent of
information quality, a total of 700 IMPACT
simulations were run.

With imperfect future forecast information, the
best strategy on average turned out to be the
second one, namely to wait two hours before
declaring a GDP.  With perfect future weather

                                                            
9 L. M. Brown, et al., Model Development
Reflecting Uncertainties, The MITRE
Corporation, MTR93W125, January 1994.

information, a decision immediately after the
four-hour forecast generated the best result, as
expected.  In both the perfect and imperfect
forecast cases, no action by both airlines and
ATM authority produced the worst result.

Efficiency and Predictability

Since efficient use of airport capacity matches
the demand with capacity, we would expect that
the best strategy tends to put demand near
system capacity.  However, in this critical regime
where demand and capacity are approximately
equal, the system is extremely sensitive to small
changes in capacity and demand.  In surface
transportation systems, behavior in the critical
regime has been studied in terms of the
individual vehicles and the influence on
performance at the system level.10  These results
for surface traffic indicate that efforts to manage
the system to make it more efficient are in a
sense self-limiting, because they make the
system less predictable.  Can this kind of effect
occur in TFM operations?

Figure 3 shows the distribution of airline costs
for the four imperfect-forecast cases, across the
100 histories. (IMPACT estimates delay costs to
airlines in TFM scenarios; these costs are based
on available published information, but have not
been validated by any airlines.)   Number of
instances in which the average cost per flight to
airlines fell into U.S.$500 bins is plotted against
the maximum cost in each bin.  Figure 4 plots
the average cost and standard deviation across all
cases with imperfect weather forecasts.  Among
the imperfect-forecast cases, the one that
involved making a decision two hours in
advance of the capacity reduction has the lowest
average cost across the 100 histories, but its
standard deviation is greater than the case where
the decision was made four hours in advance.
Thus, the decision-making strategy that is most
efficient on average is sub-optimal in terms of
predictability of total-cost outcome.  With
perfect information, the average cost is slightly
less when the decision was made four hours in
advance, as expected.

                                                            
10 K. Nagel, S. Rasmussen, C. L. Barrett,
“Network Traffic as a Self-Organized Critical
Phenomena [sic]”, Santa Fe Institute paper 96-
08-056, Santa Fe, February 22, 1996.
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Figure 4.  Average Cost per Flight and Standard Deviation Across 100 Weather Histories, with
Imperfect Weather Forecast Information
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Although we have not tried to show whether this
kind of behavior occurs in other instances of
imperfect information, the explanation for this
behavior is clear.  With a severe weather forecast
at four hours in advance, forecast performance
data indicates that the actual weather on average
will not be as severe as the forecast.  Thus, an
early response to a severe weather forecast tends
to clamp the system down to a demand level
which is often much less than actual capacity.  In
this non-critical regime, system performance is
relatively insensitive to changes in capacity and
demand, so the result has small variance across
the possible outcomes.  On the other hand,
waiting two hours before making a decision
matches demand to capacity more accurately and
tends to put the system near the critical state
where demand and capacity are more nearly
equal.  Thus, variance is higher.  In the other
cases, in which the ATM authority does nothing,
there is also high variance across relatively high
costs because system performance continues to
be sensitive to capacity changes when demand
exceeds capacity.

In the set of cases where decision makers had
perfect weather information, there was no such
clear-cut difference in standard deviation
between a decision made four hours in advance
and a decision made two hours in advance of the
event (see Figure 5).  As expected with perfect
information, a decision made four hours in
advance gives the lowest expected cost, although
there is very little cost difference for a decision
made two hours in advance (see Figure 6).

Attitudes towards Economic Risk

One way of describing the trade-off between
expected cost and predictability in TFM
operations with imperfect information is through
the concept of attitude towards economic risk.11

If a decision-maker bases decisions on expected
cost, the decision-maker is said to be “risk-
neutral”.  If the decision-maker is willing to
absorb additional expected cost in order to
reduce the probability of a high-cost outcome,
the decision-maker is said to be “risk-averse”.
Finally, if the decision-maker is willing to absorb
additional expected cost in order to increase the
likelihood of very low-cost outcomes, the
decision-maker is said to be “risk-seeking”.  In

                                                            
11 L. A. Wojcik, op cit., pp. 569-570.

the TFM scenario with imperfect information
analyzed here, a risk-averse decision-maker may
prefer declaring a GDP four hours in advance to
waiting two hours.  Risk-neutral and risk-seeking
decision-makers prefer to wait two hours, since
this strategy has lower expected cost and higher
variance.

TFM decision-making is analogous to many
other kinds of decision-making involving
uncertain future information.  For example, a
trader on the stock market who owns a stock
continually faces a decision of whether or not to
sell the stock immediately.  Imperfect
information is available about the future price of
the stock.  If the trader receives bad news about
the stock (e.g., its price starts to decline), the
trader may decide to sell the stock to eliminate
the risk of possible lower prices in the future.
This corresponds (in a very approximate way!) to
declaring a GDP early in the TFM scenario.  As
in the TFM example presented here, selling the
stock immediately reduces uncertainty, but in
some cases may be worse in terms of expected
value than holding the stock.  Quantitative risk
management is a familiar concept in finance, and
the analysis of this paper suggests that it might
be useful to TFM decision-making analysis as
well.

A key factor in TFM decision-making, however,
is that the ATM authority makes decisions on
behalf of the entire system.  It would seem
appropriate to adjust the attitude towards risk to
correspond to what is preferred by the system as
a whole, if such a thing is possible.  The
difficulty in reaching a consensus depends on
how wide the variation is between the
stakeholders on attitude towards risk.  It is
expected that illustrations generated using an
agent-based model like IMPACT could be useful
for showing examples of different decision-
making strategies and could be helpful as a
consensus-building tool.

Conclusions

The decision analysis perspective permits
analysis of TFM decision-making that explicitly
accounts for the imperfect information available
to decision-makers at the times of decision.
Without this perspective, and merely analyzing
decision-making in terms of actual outcomes, it
will be difficult to make progress on improving
TFM decision-making.
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Figure 6.  Average Cost Per Flight and Standard Deviation Across 100 Weather Histories, with
Perfect Weather Forecast Information
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The modeling reported in this paper combines
the perspective of decision analysis with agent-
based modeling.  The results of the modeling
show a decision-making regime in which the
expected efficiency of the system (as measured
by cost to the airlines) trades off against
predictability.  This trade-off arises when there is
a forecast of a severe capacity reduction and the
ATM authority has the option to respond
conservatively with a ground delay program that
severely limits the arrival traffic.  Or, the ATM
authority can wait until better information about
the weather becomes available, but suffer the
consequence that more flights are already
airborne at the time a GDP is declared.  In the
single weather scenario simulated in this paper,
waiting gives a better result on average, but
greater variation in cost outcomes.  In other
scenarios, it may be better on average to declare
a GDP early.

Combining the perspectives of self-interested
agent-based modeling with decision analysis, we
believe we have a sound basis for understanding
and analyzing decision making in TFM
operations and possibly other areas of ATM as
well.  However in the work reported to date, the
scenarios are extremely simplified compared to
realistic scenarios.  Only arrivals at a single
airport are considered and the scope of decision-
makers’ options is very limited.  Factors such as
propagation of disruptive effects to other system
resources12 13 are not explicitly modeled.  It is a
research challenge to determine how to account
for the complexities of actual operations in a way
that can be validated, while retaining the
practicality and clarity of the model.  It may be
possible to extend the notion of TFM decision-
making to explicitly include decision-making
with imperfect future information about demand,
as well as capacity.  Considerable additional
work will be necessary to apply the basis
described in this paper towards useful tools for
                                                            
12 P. T. R. Wang, F. Wieland, and L. A. Wojcik,
“DPAT Flight Delay Modeling and Itinerary
Tracking”, to be presented at the First American
Institute of Aeronautics and Astronautics
(AIAA) Aircraft Technology, Integration and
Operation Forum, Los Angeles, California, U.S.,
October 16-18, 2001.
13 L. Schaefer and D. Millner, “Flight delay
propagation analysis with the Detailed Policy
Assessment Tool”, to be published in
Proceedings of the 2001 IEEE Systems, Man,
and Cybernetics Conference.

assessing operational TFM decision-making
strategies in realistic scenarios.
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